
July 2016 DocID023025 Rev 4 1/18

1

SPC56xP54x, SPC56xP60x
Errata sheet

SPC56xP54x, SPC56xP60x devices errata
JTAG_ID = 0x1AE2_4041

Introduction

This errata sheet describes all the functional and electrical problems known in the revision
1.1 of the SPC56xP54x and SPC56xP60x devices, identified with the
JTAG_ID = 0x1AE2_4041.

All the topics covered in this document refer to RM0083 Rev. 5 and SPC56xP54x,
SPC56xP60x, datasheet Rev. 6 (see A.1: Reference document).

Device identification:

 JTAG_ID = 0x1AE2_4041

 MIDR1 register:

– MAJOR_MASK[3:0]: 4’b0000

– MINOR_MASK[3:0]: 4’b0001

 Package device marking mask identifier: AB

 Die mask ID: FP60X1

This errata sheet applies to SPC56xP54x and SPC56xP60x devices in accordance with
Table 1.

Table 1. Device summary

Package
Part number

768 KB Flash 1 MB Flash

LQFP144
SPC560P54L5

SPC56AP54L5

SPC560P60L5

SPC56AP60L5

LQFP100
SPC560P54L3

SPC56AP54L3

SPC560P60L3

SPC56AP60L3

www.st.com

http://www.st.com

Contents SPC56xP54x, SPC56xP60x

2/18 DocID023025 Rev 4

Contents

1 Functional problems . 5

1.1 ERR001388: FlexRay: Incomplete transmission of message frame in key
slot . 5

1.2 ERR002302: FlexRay: Message buffer can not be disabled and not locked
after CHI command FREEZE . 5

1.3 ERR002360: FlexCAN: Global masks misalignment 6

1.4 ERR002421: FlexRay: Message buffer can not be disabled in POC state
INTEGRATION_LISTEN . 7

1.5 ERR002656: FlexCAN: Abort request blocks the CODE field 7

1.6 ERR003022: SWT: Watchdog is disabled during BAM execution 7

1.7 ERR003165: BAM: Code download via FlexCAN not functioning in a CAN
network . 8

1.8 ERR003204: LINFlex: LDIV lower than 1.5 value are not valid when in
UART mode . 8

1.9 ERR003262: Register protection on full CMU_CSR 8

1.10 ERR003263: Serial boot and censorship: Flash read access 9

1.11 ERR003264: MCM: MRSR does not report power on reset event 9

1.12 ERR003269: MC_ME: Peripheral clocks may get incorrectly disabled or
enabled after entering debug mode . 9

1.13 ERR003407: FlexCAN: CAN transmitter stall in case of no remote frame in
response to Tx packet with RTR = 1 . 10

1.14 ERR003584: MC_ME: Possibility of machine check on low-power mode exit

 . 10

1.15 ERR003609: CRC: Limitation of hardware comparison for CRC result via
CRC_OUTP_CHK . 12

1.16 ERR003610: FlexCAN: Wrong data transmission exiting from STOP mode
in case EXTAL frequency is greater than IRC . 12

1.17 ERR003702: Nexus pins may drive an unknown value immediately after
power up but before the 1st clock edge . 13

1.18 ERR005113: ADC: triggering an ABORT or ABORTCHAIN before the
conversion starts . 13

1.19 ERR005203: ADC: "Abort command" aborts the ongoing injected channel
as well as the upcoming normal channel . 14

1.20 ERR007804: LINFlex: Consecutive headers received by LIN Slave triggers
error interrupt . 14

DocID023025 Rev 4 3/18

SPC56xP54x, SPC56xP60x Contents

3

1.21 ERR010115: FCCU: Possible Fake Fault for FCCU CF[6] and CF[7] . . . 15

Appendix A Further information . 16

A.1 Reference document . 16

A.2 Acronyms . 16

Revision history . 17

List of tables SPC56xP54x, SPC56xP60x

4/18 DocID023025 Rev 4

List of tables

Table 1. Device summary . 1
Table 2. Acronyms . 16
Table 3. Document revision history . 17

DocID023025 Rev 4 5/18

SPC56xP54x, SPC56xP60x Functional problems

17

1 Functional problems

1.1 ERR001388: FlexRay: Incomplete transmission of message
frame in key slot

Description:

The FlexRay module will transmit an incomplete message in the key slot under the following
circumstances:

1. The transmit message buffer n assigned to the key slot is located in the message buffer
segment 2, that is, FR_MBSSUTR[MB_LAST_SEG1] < n.

2. The data size of the message buffer segment 1 is smaller than the static payload
length, that is, FR_MBDSR[MBSEG1DS] < PCR19[payload_length_static].

In this case, the FlexRay module will transmit only FR_MBDSR[MBSEG1DS] payload words
from message buffer n. The remaining words are padded with 0’s.

Workaround:

The transmit message buffer assigned to key slot must be located in message buffer
segment 1.

1.2 ERR002302: FlexRay: Message buffer can not be disabled
and not locked after CHI command FREEZE

Description:

If a complete message was transmitted from a transmit message buffer or received into a
message buffer and the Controller Host Interface (CHI) command FREEZE is issued by the
application before the end of the current slot, then this message buffer can not be disabled
and locked until the module has entered the protocol state normal active.

Consequently, this message buffer can not be disabled and locked by the application in the
protocol config state, which prevents the application from clearing the commit bit CMT and
the module from clearing the status bits. The configuration bits in the message buffer
configuration, control, status registers (MBCCSRn) and the message buffer configuration
registers MBCCFRn, MBFIDRn, and MBIDXRn are not affected.

At most one message buffer per channel is affected.

Workaround:

There are two types of workaround.

1. The application should not send the CHI command FREEZE and use the CHI
command HALT instead.

2. Before sending the CHI command FREEZE the application should repeatedly try to
disable all message buffers until all message buffers are disabled. This maximum
duration of this task is three static or three dynamic slots.

Functional problems SPC56xP54x, SPC56xP60x

6/18 DocID023025 Rev 4

1.3 ERR002360: FlexCAN: Global masks misalignment

Description:

Convention: MSB = 0.

During CAN messages reception by FlexCAN, the RXGMASK (Rx Global Mask) is used as
acceptance mask for most of the Rx message buffers (MB). When the FIFO Enable bit in
the FlexCAN module configuration register (CANx_MCR[FEN], bit 2) is set, the RXGMASK
also applies to most of the elements of the ID filter table. However there is a misalignment
between the position of the ID field in the Rx MB and in RXIDA, RXIDB and RXIDC fields of
the ID Tables. In fact RXIDA filter in the ID Tables is shifted one bit to the left from Rx MBs ID
position as shown below:

 Rx MB ID = bits 3–31 of ID word corresponding to message ID bits 0–28

 RXIDA = bits 2–30 of ID Table corresponding to message ID bits 0–28

Note that the mask bits one-to-one correspondence occurs with the filters bits, not with the
incoming message ID bits. This leads the RXGMASK to affect Rx MB and Rx FIFO filtering
in different ways.

For example, if the user intends to mask out the bit 24 of the ID filter of message buffers
then the RXGMASK is configured as 0xffff_ffef. As result, bit 24 of the ID field of the
incoming message is ignored during filtering process for message buffers. This very same
configuration of RXGMASK would lead bit 24 of RXIDA to be “don't care” and thus bit 25 of
the ID field of the incoming message would be ignored during filtering process for Rx FIFO.

Similarly, both RXIDB and RXIDC filters have multiple misalignments with regards to
position of ID field in Rx MBs, which can lead to erroneous masking during filtering process
for either Rx FIFO or MBs.

RX14MASK (Rx 14 Mask) and RX15MASK (Rx 15 Mask) have the same structure as the
RXGMASK. This includes the misalignment problem between the position of the ID field in
the Rx MBs and in RXIDA, RXIDB and RXIDC fields of the ID Tables.

Workaround:

Therefore it is recommended that one of the following actions be taken to avoid problems:

 Do not enable the RxFIFO. If CANx_MCR[FEN] = 0 then the Rx FIFO is disabled and
thus the masks RXGMASK, RX14MASK and RX15MASK do not affect it.

 Enable Rx individual mask registers. If the backwards compatibility configuration bit in
the FlexCAN module configuration register (CANx_MCR[BCC], bit 15) is set then the
Rx individual mask registers (RXIMR[0:63]) are enabled and thus the masks
RXGMASK, RX14MASK and RX15MASK are not used.

 Do not use masks RXGMASK, RX14MASK and RX15MASK (that is, let them in reset
value which is 0xffff_ffff) when CANx_MCR[FEN] =1 and CANx_MCR[BCC] = 0. In this
case, filtering processes for both Rx MBs and Rx FIFO are not affected by those
masks.

 Do not configure any MB as Rx (that is, let all MBs as either Tx or inactive) when
CANx_MCR[FEN] = 1 and CANx_MCR[BCC] = 0. In this case, the masks RXGMASK,
RX14MASK and RX15MASK can be used to affect ID tables without affecting filtering
process for Rx MBs.

DocID023025 Rev 4 7/18

SPC56xP54x, SPC56xP60x Functional problems

17

1.4 ERR002421: FlexRay: Message buffer can not be disabled in
POC state INTEGRATION_LISTEN

Description:

If the communication controller is started as a non-coldstart node and configured and
enabled message buffers in the POS config state for slot 1, then the message buffer can not
be disabled in the INTEGRATION_LISTEN state, which is entered when no communication
can be established.

Workaround:

A Software work-around is available, which is as follows: Run a freeze command just before
running the message buffer disable for slot 1. This should enable the message buffer
disable during the Listen States.

1.5 ERR002656: FlexCAN: Abort request blocks the CODE field

Description:

An Abort request to a transmit message buffer (TxMB) can block any write operation into its
CODE field. Therefore, the TxMB cannot be aborted or deactivated until it completes a valid
transmission (by winning the CAN bus arbitration and transmitting the contents of the
TxMB).

Workaround:

Instead of aborting the transmission, use deactivation instead.

Note: Note that there is a chance the deactivated TxMB can be transmitted without setting IFLAG
and updating the CODE field if it is deactivated.

1.6 ERR003022: SWT: Watchdog is disabled during BAM
execution

Description:

The watchdog is disabled at the start of BAM execution. In the case of an unexpected issue
during BAM execution the CPU may be stalled and it will be necessary to generate an
external reset to recover.

Workaround:

No workaround.

Functional problems SPC56xP54x, SPC56xP60x

8/18 DocID023025 Rev 4

1.7 ERR003165: BAM: Code download via FlexCAN not
functioning in a CAN network

Description:

When the serial download via FlexCAN is selected setting the FAB (force alternate boot)
pin, and ABS (alternate boot selector) pins (ABS0 = 1 and ABS1 = 0) and the micro is part of
a CAN network, the serial download protocol may unexpectedly stop in case of CAN traffic.
After the code has been downloaded, the BAM tries to disable the FlexCAN module writing
the MCR (module configuration register) without waiting for the acknowledge bit LPM_ACK
(low power mode acknowledge) to be set. The FlexCAN cannot enter the low power mode
until all current transmissions or receptions have finished, further writings into any FlexCAN
register may cause the low power mode not to be entered and, as consequence, the BAM to
stop.

Workaround:

Since the higher the traffic, the higher the chance for the BAM to try to disable the FlexCAN
module during a CAN frame reception, make sure that no other CAN frame is sent until the
code download protocol has been completed.

1.8 ERR003204: LINFlex: LDIV lower than 1.5 value are not valid
when in UART mode

Description:

Maximum baud rate is Fsys / 24 = Fsys/(16 × LDIV) with LDIV = LINIBRR + LINFBRR / 16.

Configuration with LINIBRR = 1 and LINFBRR < 8 are invalid when UART mode is selected.

Workaround:

No workaround.

1.9 ERR003262: Register protection on full CMU_CSR

Description:

The register protection on CMU_CSR of CMU0 works only on the full 32 bit, while it should
protect only the bits 24–31. As a consequence, when register protection is active on
CMU_CSR the frequency meter cannot be used anymore.

Workaround:

In order to perform a frequency meter operation, the register protection of the relevant CMU
must be disabled first; this workaround would work only when soft lock is active.

DocID023025 Rev 4 9/18

SPC56xP54x, SPC56xP60x Functional problems

17

1.10 ERR003263: Serial boot and censorship: Flash read access

Description:

In a secured device, starting with a serial boot, it is possible to read the content of the four
Flash locations where the RCHW is stored. For example if the RCHW is stored at address
0x00000000, the reads at address 0x00000000, 0x00000004, 0x00000008 and
0x0000000C will return a correct value. Any other Flash address is not readable.

Workaround:

No workaround.

1.11 ERR003264: MCM: MRSR does not report power on reset
event

Description:

The flag MRSR[POR] stays low after power on reset event on the device.

Workaround:

Do not use MRSR[POR] to determine power on reset cause. Use RGM_DES instead.

1.12 ERR003269: MC_ME: Peripheral clocks may get incorrectly
disabled or enabled after entering debug mode

Description:

If ME_RUN_PCx, ME_LP_PCx, ME_PCTLx registers are changed to enable or disable a
peripheral, and the device enters debug mode before a subsequent mode transition, the
peripheral clock gets enabled or disabled according to the new configuration programmed.
Also ME_PSx registers will report incorrect status as the peripheral clock status is not
expected to change on debug mode entry.

Workaround:

After modifying any of the ME_RUN_PCx, ME_LP_PCx, ME_PCTLx registers, request a
mode change and wait for the mode change to be completed before entering debug mode in
order to have consistent behaviour on peripheral clock control process and clock status
reporting in the ME_PSx registers.

Functional problems SPC56xP54x, SPC56xP60x

10/18 DocID023025 Rev 4

1.13 ERR003407: FlexCAN: CAN transmitter stall in case of no
remote frame in response to Tx packet with RTR = 1

Description:

FlexCAN does not transmit an expected message when the same node detects an incoming
Remote Request message asking for any remote answer.

The issue happens when two specific conditions occur:

1. The Message Buffer (MB) configured for remote answer (with code “a”) is the last MB.
The last MB is specified by Maximum MB field in the Module Configuration Register
(MCR[MAXMB]).

2. The incoming Remote Request message does not match its ID against the last MB ID.

While an incoming Remote Request message is being received, the FlexCAN also scans
the transmit (Tx) MBs to select the one with the higher priority for the next bus arbitration. It
is expected that by the Intermission field it ends up with a selected candidate (winner). The
coincidence of conditions (1) and (2) above creates an internal corner case that cancels the
Tx winner and therefore no message will be selected for transmission in the next frame.
This gives the appearance that the FlexCAN transmitter is stalled or “stops transmitting”.

The problem can be detectable only if the message traffic ceases and the CAN bus enters
into Idle state after the described sequence of events.

There is NO ISSUE if any of the conditions below holds:

1. The incoming message matches the remote answer MB with code “a”.

2. The MB configured as remote answer with code “a” is not the last one.

3. Any MB (despite of being Tx or Rx) is reconfigured (by writing its CS field) just after the
Intermission field.

4. A new incoming message sent by any external node starts just after the Intermission
field.

Workaround:

Do not configure the last MB as a Remote Answer (with code “a”).

1.14 ERR003584: MC_ME: Possibility of machine check on low-
power mode exit

Description:

When executing from the Flash and entering a low-power mode (LPM) where the Flash is in
low-power or power-down mode, 2-4 clock cycles exist at the beginning of the RUNx to LPM
transition during which a wakeup or interrupt will generate a machine check due to the Flash
not being available on RUNx mode re-entry. This will cause either a checkstop reset or
machine check interrupt.

Workaround:

This issue can be handled in one of the following ways. Workaround #1 configures the
application to handle the machine check interrupt in RAM dealing with the problem if it
occurs. Workaround #2 configures the MCU to avoid the machine check interrupt.

DocID023025 Rev 4 11/18

SPC56xP54x, SPC56xP60x Functional problems

17

Workaround #1: The application can be configured to handle the machine check interrupt in
RAM; when this occurs, the mode entry module can be used to bring up the Flash normally
and resume execution. Before stop mode entry, ensure the following:

1. Enable the machine check interrupt at the core MSR[ME] - this prevents a machine
check reset occurring

2. Copy IVOR vector table to RAM

3. Point IVPR to vector table in RAM

4. Implement machine check interrupt handler in RAM to power-cycle Flash to
synchronise status of Flash between Mode Entry and Flash module

The interrupt handler should perform the following steps:

1. Test machine check at LPM exit due to wakeup/interrupt event

2. ME_RUNx_MC[CFLAON] = 0b01 (power-down)

3. Re-enter mode RUNx (x = 0,1,2,3) to power down Flash

4. Wait for transition to RUNx mode to complete (ME_GS[S_MTRANS] = 1)

5. ME_RUNx_MC[CFLAON] = 0b11 (normal)

6. Re-enter mode RUNx (x = previous x) to power up Flash

7. Wait for transition to RUNx mode to complete (ME_GS[S_MTRANS] = 1)

8. On completion, code execution will return to Flash (via se_rfci)

Workaround #2: The application can be configured to avoid the machine check interrupt;
low-power mode can be entered from a RAM function and mode entry configured to have
Flash off on return to the current RUNx mode. Flash can then be re-enabled by mode entry
within the RAM function before returning to execution from Flash.

1. Prior to LPM mode entry request branch to code execution in RAM while Flash is still in
normal mode

2. Set ME_RUNx_MC[CFLAON] = 0b01 (power-down) or 0b10 (low-power) for
STOP0/HALT0

3. Set ME_STOP0/HALT0_MC[CFLAON] = ME_RUNx_MC[CFLAON]

4. Enter STOP0/HALT0 mode

5. At wakeup or interrupt from STOP0/HALT0, MCU enters RUNx mode executing from
RAM with Flash in low-power or power-down as per the ME_RUNx_MC configuration
from step 2.

6. After the STOP0/HALT0 request, set ME_RUNx_MC[CFLAON] = 0b11 (normal)

7. Enter RUNx mode

8. Wait for transition to RUNx mode to complete (ME_GS[S_MTRANS] = 0)

9. Return to code execution in Flash

Functional problems SPC56xP54x, SPC56xP60x

12/18 DocID023025 Rev 4

1.15 ERR003609: CRC: Limitation of hardware comparison for
CRC result via CRC_OUTP_CHK

Description:

The comparison via CRC_OUTP_CHK register of the calculated CRC stored in CRC_OUTP
register without CPU load doesn't work for Context 2 and Context 3. Moreover if the
comparison via CRC_OUTP_CHK register is used for Context 1, then Context 2 and
Context 3 cannot be used for CRC calculation If user needs to use more than one context,
the comparison has to be done via SW with negligible CPU load.

Workaround:

Using the Context 1, do not use the Context 2 and Context 3 or to do the comparison via
SW. Using the Context 2 and/or Context 3, always to do the comparison via SW.

1.16 ERR003610: FlexCAN: Wrong data transmission exiting from
STOP mode in case EXTAL frequency is greater than IRC

Description:

The FlexCAN module has got a programmable clock source that can be either the system
clock (SYS_CLK) or oscillator clock (XOSC_CLK) selected by CLK_SRC bit in the
FlexCAN_CTRL register. In case FlexCAN module has selected the oscillator clock as clock
source and XOSC_CLK is bigger than IRC frequency @16 MHz and the system clock is
PLL_CLK if the device enters STOP mode and the FlexCAN module is in transmission then
when device exits from STOP mode the FlexCAN module can transmit wrong data. This
behavior happens because during STOP mode exit, SYS_CLK will be IRC @16 MHz till
PLL gets locked and if a frame transmission happens during this time itself then there will be
a CAN Spec violation. The FlexCAN module clock source should not be faster than
SYS_CLK.

Workaround:

Just before entering/requesting the STOP mode, set the “FRZ” and “HALT” bit of CAN_MCR
register to '1' to request for freeze mode. During the STOP mode exit, check for the mode
transition completion. As mode transition will be over, only when all clock sources are on
and the PLL is selected as system clock, unfreeze the CAN by resetting the “FRZ” or “HALT”
bit.

DocID023025 Rev 4 13/18

SPC56xP54x, SPC56xP60x Functional problems

17

1.17 ERR003702: Nexus pins may drive an unknown value
immediately after power up but before the 1st clock edge

Description:

The Nexus output pins (message data outputs 0:12 [MDO] and Message start/end outputs
0:1 [MSEO]) may drive an unknown value (high or low) immediately after power up but
before the 1st clock edge propagates through the device (instead of being weakly pulled
low). This may cause high currents if the pins are tied directly to a supply/ground or any low
resistance driver (when used as a general purpose input [GPI] in the application).

Workaround:

1. Do not tie the Nexus output pins directly to ground or a power supply.

2. If these pins are used as GPI, limit the current to the ability of the regulator supply to
guarantee correct start up of the power supply. Each pin may draw up to few hundred
mA current.

If not used, the pins may be left unconnected.

1.18 ERR005113: ADC: triggering an ABORT or ABORTCHAIN
before the conversion starts

Description:

When ABORTCHAIN is programmed (ADC_MCR[ABORTCHAIN] = 1) and an injected
chain conversion is programmed afterwards, the injected chain is aborted, but neither
ADC_ISR[JECH] is set, nor ADC_MCR [ABORTCHAIN] is reset.

When ABORT is programmed (ADC_MCR[ABORT] = 1) and normal/injected chain
conversion comes afterwards, the ABORT bit is reset and chain conversion runs without a
channel abort.

If ABORT or ABORTCHAIN feature is programmed after the start of the chain conversion, it
works properly.

Workaround:

Do not program ADC_MCR[ABORT]/ ADC_MCR[ABORTCHAIN] before starting the
execution of the chain conversion.

Functional problems SPC56xP54x, SPC56xP60x

14/18 DocID023025 Rev 4

1.19 ERR005203: ADC: "Abort command" aborts the ongoing
injected channel as well as the upcoming normal channel

Description:

If an Injected chain (jch1, jch2, jch3) is injected over a Normal chain (nch1, nch2, nch3,
nch4) the Abort switch does not behave as expected.

Expected behavior:

 Correct Case (without SW Abort on jch3): Nch1 -> Nch2(aborted) -> Jch1 -> Jch2 ->
Jch3 -> Nch2(restored) -> Nch3 -> Nch4

 Correct Case (with SW Abort on jch3): Nch1 -> Nch2(aborted) -> Jch1 -> Jch2 ->
Jch3(aborted) - > Nch2(restored) -> Nch3 -> Nch4

Observed unexpected behavior:

 Fault1 (without SW abort on jch3): Nch1 -> Nch2(aborted) -> Jch1 -> Jch2 -> Jch3 ->
Nch3 -> Nch4 (Nch2 not restored)

 Fault2 (with SW abort on jch3): Nch1 -> Nch2 (aborted) -> Jch1 -> Jch2 ->
Jch3(aborted) -> Nch4 (Nch2 not restored & Nch3 conversion skipped)

Workaround:

It is possible to detect the unexpected behavior by using the ADC_CDATA[x] register. The
ADC_CDATAx[VALID] fields will not be set for a not restored or skipped channel, which
indicates this issue has occurred. The ADC_CDATAx[VALID] fields need to be checked
before the next Normal chain execution (provided ADC_MCR[OWREN] bit is set in scan
mode).

The ADC_CDATAx[VALID] fields should be read by every ECH interrupt at the end of every
chain execution.

1.20 ERR007804: LINFlex: Consecutive headers received by LIN
Slave triggers error interrupt

Description:

As per the Local Interconnect Network (LIN) specification, the processing of one frame
should be aborted by the detection of a new header sequence.

But in LINFlex IP, if the LIN Slave receives a new header instead of data response
corresponding to a previous header received, it triggers a framing error during the new
header's reception. Also the LIN Slave remains waiting for the data response corresponding
to the first header received.

Workaround:

The following workaround should be applied:

1. Set the LTOM bit in the LIN Time-Out Control Status Register (LINTCSR[LTOM]) to '0'.

2. Set Idle on Timeout in the LINTCSR[IOT] register to '1'.

3. Configure master to wait until the occurrence of the Output Compare flag in LIN Error
Status Register (LINESR[OCF]) before sending the next header. This flag causes the
LIN Slave to go to an IDLE state before the next header arrives, which will be accepted
without any framing error.

DocID023025 Rev 4 15/18

SPC56xP54x, SPC56xP60x Functional problems

17

1.21 ERR010115: FCCU: Possible Fake Fault for FCCU CF[6] and
CF[7]

Description:

Despite no Double ECC Error present, a fake Fault may happen for following FCCU critical
fault:

 CF[6] Code Flash ECC Multi bit error
The issue do not happen in case of # of wait state for Code Flash more or equal to
3WS @ 50 < freq <= 64 MHz
2WS @ 25 < freq <= 50 MHz
1WS @ freq <= 25 MHz

 CF[7] Data Flash ECC Multi bit error
The issue do not happen in case of # of wait state for Data Flash more or equal to 8
(RWSC >=8)

Flash MCR correctly does not signal the ECC error and the interrupt IVOR 2 is not invoked.

Workaround:

Verify that the setting of CF[6] and CF[7] of CSF0 in FCCU is confirmed reading the value of
EER of MCR Flash register.

Further information SPC56xP54x, SPC56xP60x

16/18 DocID023025 Rev 4

Appendix A Further information

A.1 Reference document

 32-bit MCU family built on the Power Architecture® embedded category for automotive
chassis and safety electronics applications (RM0083, Doc ID 018714)

 32-bit Power Architecture® based MCU with 1088 KB Flash memory and 80 KB RAM
for automotive chassis and safety applications (SPC560P54x, SPC560P60x,
SPC56AP54x, SPC56AP60x datasheet, Doc ID 18340)

A.2 Acronyms

Table 2. Acronyms

Acronym Name

RWCS Read/write access control/status register

RWD Read/write access data register

CHI Controller host interface

MB Message buffer

TxMB Transmit message buffer

FAB Force alternate boot

MCR Module configuration register

LPM Low-power mode

SYS_CLK System clock

GPI General purpose input

LIN Local Interconnect Network

DocID023025 Rev 4 17/18

SPC56xP54x, SPC56xP60x Revision history

17

Revision history

Table 3. Document revision history

Date Revision Changes

02-Apr-2012 1 Initial release.

17-Sep-2013 2 Updated Disclaimer.

02-Mar-2016 3

Added the following errata:

– ERR005113

– ERR005203

– ERR007804

– ERR010115

Removed the following errata:

– ERR003324

Removed Appendix A: Defects across silicon version

Added Table 2: Acronyms.

26-Jul-2016 4

Updated Table 1: Device summary

Removed the following errata:

– ERR000817

– ERR002423

– ERR003611

SPC56xP54x, SPC56xP60x

18/18 DocID023025 Rev 4

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

	1 Functional problems
	1.1 ERR001388: FlexRay: Incomplete transmission of message frame in key slot
	1.2 ERR002302: FlexRay: Message buffer can not be disabled and not locked after CHI command FREEZE
	1.3 ERR002360: FlexCAN: Global masks misalignment
	1.4 ERR002421: FlexRay: Message buffer can not be disabled in POC state INTEGRATION_LISTEN
	1.5 ERR002656: FlexCAN: Abort request blocks the CODE field
	1.6 ERR003022: SWT: Watchdog is disabled during BAM execution
	1.7 ERR003165: BAM: Code download via FlexCAN not functioning in a CAN network
	1.8 ERR003204: LINFlex: LDIV lower than 1.5 value are not valid when in UART mode
	1.9 ERR003262: Register protection on full CMU_CSR
	1.10 ERR003263: Serial boot and censorship: Flash read access
	1.11 ERR003264: MCM: MRSR does not report power on reset event
	1.12 ERR003269: MC_ME: Peripheral clocks may get incorrectly disabled or enabled after entering debug mode
	1.13 ERR003407: FlexCAN: CAN transmitter stall in case of no remote frame in response to Tx packet with RTR = 1
	1.14 ERR003584: MC_ME: Possibility of machine check on low- power mode exit
	1.15 ERR003609: CRC: Limitation of hardware comparison for CRC result via CRC_OUTP_CHK
	1.16 ERR003610: FlexCAN: Wrong data transmission exiting from STOP mode in case EXTAL frequency is greater than IRC
	1.17 ERR003702: Nexus pins may drive an unknown value immediately after power up but before the 1st clock edge
	1.18 ERR005113: ADC: triggering an ABORT or ABORTCHAIN before the conversion starts
	1.19 ERR005203: ADC: "Abort command" aborts the ongoing injected channel as well as the upcoming normal channel
	1.20 ERR007804: LINFlex: Consecutive headers received by LIN Slave triggers error interrupt
	1.21 ERR010115: FCCU: Possible Fake Fault for FCCU CF[6] and CF[7]

	Appendix A Further information
	A.1 Reference document
	A.2 Acronyms

	Revision history

